The MEK kinase Ssk2p promotes actin cytoskeleton recovery after osmotic stress.

نویسندگان

  • Tatiana Yuzyuk
  • Marissa Foehr
  • David C Amberg
چکیده

Saccharomyces cerevisiae adapts to osmotic stress through the activation of a conserved high-osmolarity growth (HOG) mitogen-activated protein (MAP) kinase pathway. Transmission through the HOG pathway is very well understood, yet other aspects of the cellular response to osmotic stress remain poorly understood, most notably regulation of actin organization. The actin cytoskeleton rapidly disassembles in response to osmotic insult and is induced to reassemble only after osmotic balance with the environment is reestablished. Here, we show that one of three MEK kinases of the HOG pathway, Ssk2p, is specialized to facilitate actin cytoskeleton reassembly after osmotic stress. Within minutes of cells' experiencing osmotic stress or catastrophic disassembly of the actin cytoskeleton through latrunculin A treatment, Ssk2p concentrates in the neck of budding yeast cells and concurrently forms a 1:1 complex with actin. These observations suggest that Ssk2p has a novel, previously undescribed function in sensing damage to the actin cytoskeleton. We also describe a second function for Ssk2p in facilitating reassembly of a polarized actin cytoskeleton at the end of the cell cycle, a prerequisite for efficient cell cycle completion. Loss of Ssk2p, its kinase activity, or its ability to localize and interact with actin led to delays in actin recovery and a resulting delay in cell cycle completion. These unique capabilities of Ssk2p are activated by a novel mechanism that does not involve known components of the HOG pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actin recovery and bud emergence in osmotically stressed cells requires the conserved actin interacting mitogen-activated protein kinase kinase kinase Ssk2p/MTK1 and the scaffold protein Spa2p.

Osmotic stress causes actin cytoskeleton disassembly, a cell cycle arrest, and activation of the high osmolarity growth mitogen-activated protein kinase pathway. A previous study showed that Ssk2p, a mitogen-activated protein kinase kinase kinase of the high osmolarity growth pathway, promotes actin cytoskeleton recovery to the neck of late cell cycle, osmotically stressed yeast cells. Data pre...

متن کامل

Requirement for the polarisome and formin function in Ssk2p-mediated actin recovery from osmotic stress in Saccharomyces cerevisiae.

Osmotic stress induces activation of an adaptive mitogen-activated protein kinase pathway in concert with disassembly of the actin cytoskeleton by a mechanism that is not understood. We have previously shown that the conserved actin-interacting MAP kinase kinase kinase Ssk2p/MEKK4, a member of the high-osmolarity glycerol (HOG) MAPK pathway of Saccharomyces cerevisiae, mediates recovery of the ...

متن کامل

B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization.

The actin cytoskeleton controls multiple cellular functions, including cell morphology, movement, and growth. Accumulating evidence indicates that oncogenic activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 (MEK/ERK1/2) pathway is accompanied by actin cytoskeletal reorganization. However, the signaling events contributing to actin cytoskeleton r...

متن کامل

Stress-regulated kinase pathways in the recovery of tip growth and microtubule dynamics following osmotic stress in S. pombe.

The cell-integrity and stress-response MAP kinase pathways (CIP and SRP, respectively) are stimulated by various environmental stresses. Ssp1 kinase modulates actin dynamics and is rapidly recruited to the plasma membrane following osmotic stress. Here, we show that osmotic stress arrested tip growth, induced the deposition of abnormal cell-wall deposits at tips and led to disassociation of F-a...

متن کامل

The Salmonella Kinase SteC Targets the MAP Kinase MEK to Regulate the Host Actin Cytoskeleton

After host cell entry, Salmonella replicate in membrane-bound compartments, which accumulate a dense meshwork of F-actin through the kinase activity of the Salmonella SPI-2 type III secretion effector SteC. We find that SteC promotes actin cytoskeleton reorganization by activating a signaling pathway involving the MAP kinases MEK and ERK, myosin light chain kinase (MLCK) and Myosin IIB. Specifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 13 8  شماره 

صفحات  -

تاریخ انتشار 2002